Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Vet Sci ; 171: 105231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513460

RESUMO

Intestinal disorders can affect pigs of any age, especially when animals are young and more susceptible to infections and environmental stressors. For instance, pathogenic E. coli can alter intestinal functions, thus leading to altered nutrient adsorption by interacting with local cells through lipopolysaccharide (LPS). Among several compounds studied to counteract the negative effects on the intestine, short-chain fatty acids (SCFA) were demonstrated to exert beneficial effects on gut epithelial cells and resident immune cells. In this study, acetate and propionate were tested for their beneficial effects in a co-culture model of IPEC-J2 and porcine PBMC pre-stimulated with LPS from E. coli 0111:B4 aimed at mimicking the interaction between intestinal cells and immune cells in an inflammatory/activated status. IPEC-J2 viability was partially reduced when co-cultured with activated PBMC and nitric oxide concentration increased. IPEC-J2 up-regulated innate and inflammatory markers, namely BD-1, TLR-4, IL-8, TNF-α, NF-κB, and TGF-ß. Acetate and propionate positively modulated the inflammatory condition by sustaining cell viability, reducing the oxidative stress, and down-regulating the expression of inflammatory mediators. TNF-α expression and secretion showed an opposite effect in IPEC-J2 depending on the extent of LPS stimulation of PBMC and TGF-ß modulation. Therefore, SCFA proved to mediate a differential effect depending on the degree and duration of inflammation. The expression of the tight junction proteins (TJp) claudin-4 and zonula occludens-1 was up-regulated by LPS while SCFA influenced TJp with a different kinetics depending on PBMC stimulation. The co-culture model of IPEC-J2 and LPS-activated PBMC proved to be feasible to address the modulation of markers related to anti-bacterial immunity and inflammation, and intestinal epithelial barrier integrity, which are involved in the in vivo responsiveness and plasticity to infections.


Assuntos
Escherichia coli , Doenças dos Suínos , Animais , Suínos , Escherichia coli/metabolismo , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Propionatos , Leucócitos Mononucleares/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis , Acetatos , Fator de Crescimento Transformador beta , Inflamação/veterinária , Mucosa Intestinal/metabolismo
2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35329, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898921

RESUMO

We engineered an in vitro model of bioartificial 3D bone organoid consistent with an anatomical and vascular microenvironment common to mammalian flat and short bones. To achieve this, we chose the decellularized-decalcified matrix of the adult male rat scapula, implemented with the reconstruction of its intrinsic vessels, obtained through an original intravascular perfusion with polylevolactic (PLLA), followed by coating of the PLLA-fabricated vascularization with rat tail collagen. As a result, the 3D bone and vascular geometry of the native bone cortical and cancellous compartments was reproduced, and the rat tail collagen-PLLA biomaterial could in vitro act as a surrogate of the perivascular extracellular matrix (ECM) around the wall of the biomaterial-reconstituted cancellous vessels. As a proof-of-concept of cell compatibility and site-dependent osteoinductive properties of this bioartificial 3D construct, we show that it in vitro leads to a time-dependent microtopographic positioning of rat mesenchymal stromal cells (MSCs), initiating an osteogenic fate in relation to the bone compartment. In addition, coating of PLLA-reconstructed vessels with rat tail collagen favored perivascular attachment and survival of MSC-like cells (mouse embryonic fibroblasts), confirming its potentiality as a perivascular stroma for triggering competence of seeded MSCs. Finally, in vivo radiographic topography of bone lesions in the human jaw and foot tarsus of subjects with primary osteoporosis revealed selective bone cortical versus cancellous involvement, suggesting usefulness of a human 3D bone organoid engineered with the same principles of our rat organoid, to in vitro investigate compartment-dependent activities of human MSC in flat and short bones under experimental osteoporotic challenge. We conclude that our 3D bioartificial construct offers a reliable replica of flat and short bones microanatomy, and promises to help in building a compartment-dependent mechanistic perspective of bone remodeling, including the microtopographic dysregulation of osteoporosis.


Assuntos
Matriz Óssea , Osteoporose , Adulto , Masculino , Ratos , Animais , Humanos , Camundongos , Tecidos Suporte , Diferenciação Celular , Fibroblastos , Matriz Extracelular , Colágeno , Osteogênese , Organoides , Materiais Biocompatíveis , Células Cultivadas , Engenharia Tecidual , Mamíferos
3.
Porcine Health Manag ; 9(1): 23, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221609

RESUMO

BACKGROUND: The interest in acetate and propionate as short chain fatty acids (SCFA) derives from research on alternative strategies to the utilization of antibiotics in pig farms. SCFA have a protective role on the intestinal epithelial barrier and improve intestinal immunity by regulating the inflammatory and immune response. This regulation is associated with an increase in intestinal barrier integrity, mediated by the enhancement of tight junction protein (TJp) functions, which prevent the passage of pathogens through the paracellular space. The purpose of this study was to evaluate the effect of in vitro supplementation with SCFA (5 mM acetate and 1 mM propionate) on viability, nitric oxide (NO) release (oxidative stress), NF-κB gene expression, and gene and protein expression of major TJp (occludin [OCLN], zonula occludens-1 [ZO-1], and claudin-4 [CLDN4]) in a porcine intestinal epithelial cell (IPEC-J2) and peripheral blood mononuclear cell (PBMC) co-culture model upon LPS stimulation, through which an acute inflammatory state was simulated. RESULTS: Firstly, the inflammatory stimulus induced by LPS evaluated in the IPEC-J2 monoculture was characterized by a reduction of viability, gene expression of TJp and OCLN protein synthesis, and an increase of NO release. The response evaluated in the co-culture showed that acetate positively stimulated the viability of both untreated and LPS-stimulated IPEC-J2 and reduced the release of NO in LPS-stimulated cells. Acetate also promoted an increase of gene expression of CLDN4, ZO-1, and OCLN, and protein synthesis of CLDN4, OCLN and ZO-1 in untreated and LPS-stimulated cells. Propionate induced a reduction of NO release in both untreated and LPS-stimulated IPEC-J2. In untreated cells, propionate induced an increase of TJp gene expression and of CLDN4 and OCLN protein synthesis. Contrarily, propionate in LPS-stimulated cells induced an increase of CLDN4 and OCLN gene expression and protein synthesis. PBMC were influenced by acetate and propionate supplementation, in that NF-κB expression was strongly downregulated in LPS-stimulated cells. CONCLUSIONS: The present study demonstrates the protective effect of acetate and propionate upon acute inflammation by regulating epithelial tight junction expression and protein synthesis in a co-culture model, which simulates the in vivo interaction between epithelial intestinal cells and local immune cells.

4.
Vet Res Commun ; 47(4): 2285-2292, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37202645

RESUMO

Due to the importance of joint disease and ostearthritis (OA) in equine athletes, new regenerative treatments to improve articular cartilage repair after damage are gaining relevance. Chondrocyte de-differentiation, an important pathogenetic mechanism in OA, is a limiting factor when differentiated articular chondrocytes are used for cell-based therapies. Current research focuses on the prevention of this de-differentiation and/or on the re-differentiation of chondrocytes by employing different strategies in vitro and in vivo. Articular chondrocytes normally live in a condition of higher osmolarity (350-450 mOsm/L) compared to normal physiological fluids (~ 300 mOsm/L) and some studies have demonstrated that osmolarity has a chondroprotective effect in vitro and in vivo. Therefore, the response of horse articular chondrocytes to osmolarity changes (280, 380, and 480 mOsm/L) was studied both in proliferating, de-differentiated chondrocytes grown in adhesion, and in differentiated chondrocytes grown in a 3D culture system. To this aim, cell proliferation (cell counting), morphology (optical microscopy), and differentiation (gene expression of specific markers) were monitored along with the expression of osmolyte transporters involved in volume regulation [betaine-GABA transporter (BGT-1), taurine transporter (SLC6A6), and neutral amino acid transporter (SNAT)] real-time qPCR. Proliferating chondrocytes cultured under hyperosmolar conditions showed low proliferation, spheroidal morphology, a significant reduction of de-differentiation markers [collagen type I (Col1) and RUNX2] and an increase of differentiation markers [collagen type II (Col2) and aggrecan]. Notably, a persistently high level of BGT-1 gene expression was maintained in chondrocyte cultures at 380 mOsm/L, and particularly at 480 mOsm/L both in proliferating and differentiated chondrocytes. These preliminary data encourage the study of osmolarity as a microenvironmental co-factor to promote/maintain chondrocyte differentiation in both 2D and 3D in vitro culture systems.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Cavalos , Animais , Engenharia Tecidual/veterinária , Diferenciação Celular , Cartilagem Articular/metabolismo , Antígenos de Diferenciação/metabolismo , Concentração Osmolar , Proliferação de Células , Células Cultivadas
5.
Respir Res ; 24(1): 80, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922832

RESUMO

BACKGROUND: Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations. METHODS: Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.g., hyperoxia, LPS-induced inflammation). First, we characterized the rabbit's normal lung development along the distinct stages (i.e., pseudoglandular, canalicular, saccular, and alveolar phases) using histological, transcriptomic and proteomic analyses. Then, the impact of premature birth was investigated, comparing the sequential transcriptomic profiles of preterm rabbits obtained at different time intervals during their first week of postnatal life with those from age-matched term pups. RESULTS: Histological findings showed stage-specific morphological features of the developing rabbit's lung and validated the selected time intervals for the transcriptomic profiling. Cell cycle and embryo development, oxidative phosphorylation, and WNT signaling, among others, showed high gene expression in the pseudoglandular phase. Autophagy, epithelial morphogenesis, response to transforming growth factor ß, angiogenesis, epithelium/endothelial cells development, and epithelium/endothelial cells migration pathways appeared upregulated from the 28th day of gestation (early saccular phase), which represents the starting point of the premature rabbit model. Premature birth caused a significant dysregulation of the inflammatory response. TNF-responsive, NF-κB regulated genes were significantly upregulated at premature delivery and triggered downstream inflammatory pathways such as leukocyte activation and cytokine signaling, which persisted upregulated during the first week of life. Preterm birth also dysregulated relevant pathways for normal lung development, such as blood vessel morphogenesis and epithelial-mesenchymal transition. CONCLUSION: These findings establish the 28-day gestation premature rabbit as a suitable model for mechanistic and pharmacological studies in the context of BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Nascimento Prematuro , Animais , Gravidez , Feminino , Coelhos , Recém-Nascido , Humanos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Nascimento Prematuro/metabolismo , Hiperóxia/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Proteômica , Animais Recém-Nascidos , Pulmão/metabolismo , Inflamação/metabolismo
6.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901840

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Camundongos , Animais , Bleomicina/farmacologia , Proteômica , Pulmão/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose
7.
Ann Anat ; 246: 152039, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436720

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common complication of preterm delivery, with significant morbidity and mortality in a neonatal intensive care setting. Research in this field aims to identify the mechanisms of late lung development with possible therapeutic targets and the improvement of medical management. Rabbits represent a suitable lab preclinical tool for mimicking the clinical BPD phenotype. Rabbits are born at term in the alveolar phase as occurs in large animals and humans and in addition, they can be delivered prematurely in contrast to mice and rats. Continuous exposure to high oxygen concentration (95% O2) for 7 days induces functional and morphological lung changes in preterm rabbits that resemble those observed in BPD-affected babies. The preclinical research pays great attention to optimize the experimental procedures, reduce the number of animals used in experiments and, where possible, replace animal models with alternative assays, following the principle of the 3 Rs (Replace, Reduce and Refine). The use of in vitro assays based on the ex vivo culture of Precision Cut Lung Slices (PCLS) goes in this direction, representing a good compromise between controlled and flexible in vitro models and the more physiologically relevant in vivo ones. This work aims to set up morphological analyses to be applied in preclinical tests using preterm rabbits derived PCLS, cultured up to 7 days in different oxygen conditions, as a model. After a preliminary optimization of both lung preparation and histological processing methods of the lung slices of 300 µm, the morphological analysis was conducted evaluating a series of histomorphometric parameters derived from those widely used to follow the phases of lung development and its alterations in vivo. Our histomorphometric results demonstrated that the greatest differences from pseudo-normoxia and hyperoxia exposed samples at day 0, used as starting points to compare changes due to treatments and time, are detectable after 4 days of in vitro culture, representing the most suitable time point for analysis in preclinical screening. The combination of parameters suitable for evaluating PCLS morphology in vitro resulted to be Tissue Density and Septal Thickness. Shape Factor and Roughness, evaluated to highlight the increasing complexity of the airspaces, due to the formation of septal crests, gave useful information, however, without significant differences up to day 4. Other parameters like Mean Linear Intercept and Septal Density did not allow to highlight significant differences between different oxygen conditions and time points. Instead, Radial Alveolar Count, could not be applied to PCLS, due to the tissue changes following agar infusion and culture conditions.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Recém-Nascido , Humanos , Coelhos , Animais , Camundongos , Ratos , Displasia Broncopulmonar/etiologia , Animais Recém-Nascidos , Pulmão/patologia , Lesão Pulmonar/etiologia , Hiperóxia/complicações , Hiperóxia/genética , Oxigênio , Modelos Animais de Doenças
8.
Ann Anat ; 245: 152019, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36377095

RESUMO

The demand for artificial or bioartificial engineered tissues is increasing today in regenerative medicine techniques to replace and restore the physiological function of damaged tissues. Such engineered constructs hold different properties depending on the tissue to be replicated. As for vascularized tissues, complex biocompatible structures, namely scaffolds, play a key role in supporting oxygen and nutrient supply, thus sustaining tissue neoformation and integration with the host. Scaffold architecture significantly impacts its regenerative potential, while preclinical trials are essential to define scaffold-host interactions. In compliance with the 3 R principle, there is a clear need to optimize both the procedures to evaluate scaffold performance and the analysis methodology decreasing the number of animals required to gain consistent data. In parallel, current technologies used in preclinical research generate huge amounts of data that need to be elaborated and interpreted correctly. Therefore, we designed this study to evaluate the results of scaffold integration with the host tissue after implantation in a mouse subcutaneous pocket model. We evaluated the angiogenic response developed by the host and the degree of scaffold integration by using a combined morphometric approach based on both histological and micro-CT analyses. Six-layer scaffolds, made of polycaprolactone (PCL) microspheres, with an ordered structure were produced by thermal sintering. Scaffolds were then implanted in BALB/c mice and retrieved 21 days post-implantation when the animals were deeply anesthetized and perfused with Microfil, a contrast agent for micro-CT. Here, we describe a method to extract quantitative data from micro-CT reconstructions such as (i) total vessel volume; (ii)% of vessel penetration; (iii) distribution of vessel diameters. The general principle of this approach is the refinement of the region of interest (ROI), thus producing a volume of interest (VOI) that matches scaffold volume. This VOI serves as a dataset from which to extract volumetric information. Then VOIs are divided into three identical parts, proximal, median, and distal, to follow the vessel progression into the scaffold, thus obtaining their depth of penetration (DoP). By this methodology, we observed in mean, among the analyzed samples, a vessel invasion for 1,38 mm3 corresponding to the 1,53% of the scaffold volume. We then looked at the diameter distribution being this value a key indicator of vessel maturity, highlighting that 55% of vessels fall into the range from 5,99-53.99 µm while the remaining 45% are distributed into intervals from 54 to 136 µm. In parallel, to evaluate tissue integration in detail, histological and immunofluorescent analyses were performed to look at vessel distribution and collagen synthesis. Histological results strongly correlate with the micro-CT data providing, however, an overview of the ingrowth tissues. In addition, by immunofluorescent analysis we demonstrate that newly formed vessels are mature at the considered time point and tissue collagen deposition is widespread within the scaffolds. Collectively, we propose a new method to track vessel formation by using a multi-modal approach posing the basis for: i) the fabrication of novel scaffolds for Tissue Engineering; ii) the integration of detailed information for a wide range of morphological and functional analyses.


Assuntos
Engenharia Tecidual , Cicatrização , Camundongos , Animais , Microtomografia por Raio-X , Engenharia Tecidual/métodos , Colágeno , Tecidos Suporte/química
9.
Res Vet Sci ; 152: 687-697, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36242797

RESUMO

Currently, the main limitation for the use of adult differentiated chondrocytes in cell-based therapy and tissue engineering for the repair of articular cartilage is the difficulty of maintaining their state of differentiation during cell expansion. The adult articular cartilage has no direct blood supply, and local oxygen concentrations range from 5%-10% at the surface near the synovial fluid to less than 1% in the deep layer. Low oxygen tension is currently considered an important environmental condition for chondrocytes, and hypoxia has been explored as a signal potentially promoting differentiation and matrix deposition. In the present study, hypoxia and PL supplementation were studied to maintain differentiation in adult articular chondrocytes. Freshly isolated equine articular chondrocytes were grown in monolayer culture at a low seeding density (condition favoring proliferation and dedifferentiation) and in alginate beads (3D culture condition maintaining chondrocyte differentiation) both in normoxic and hypoxic conditions and in various conditions of supplementation or deprivation (fetal bovine serum [FBS]- and PL-free; 10% FBS; 5% PL; 10% PL). Results demonstrated that hypoxia is a micro-environmental condition that reduces chondrocyte dedifferentiation or maintains differentiation during in vitro expansion, as shown by the sustained expression of differentiation markers (COL2, ACAN, SOX9, HIF1a) and the reduction of dedifferentiation marker expression (COL1, RUNX2). In association with hypoxia, PL supplementation demonstrated a positive effect on chondrocyte differentiation in association with hypoxia. This promising result should be confirmed in other conditions of chondrocyte differentiation before proposing PL as a complete alternative to xenogenic serum for the expansion of articular chondrocytes.


Assuntos
Cartilagem Articular , Condrócitos , Cavalos , Animais , Condrócitos/metabolismo , Células Cultivadas , Diferenciação Celular , Hipóxia/metabolismo , Hipóxia/veterinária , Oxigênio , Suplementos Nutricionais
10.
PLoS One ; 17(6): e0270005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704641

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with no curative pharmacological treatment. The most used animal model of IPF for anti-fibrotic drug screening is bleomycin (BLM)-induced lung fibrosis. However, several issues have been reported: the balance among disease resolution, an appropriate time window for therapeutic intervention and animal welfare remain critical aspects yet to be fully elucidated. In this study, C57Bl/6 male mice were treated with BLM via oropharyngeal aspiration (OA) following either double or triple administration. The fibrosis progression was longitudinally assessed by micro-CT every 7 days for 4 weeks after BLM administration. Quantitative micro-CT measurements highlighted that triple BLM administration was the ideal dose regimen to provoke sustained lung fibrosis up to 28 days. These results were corroborated with lung histology and Bronchoalveolar Lavage Fluid cells. We have developed a mouse model with prolonged lung fibrosis enabling three weeks of a curative therapeutic window for the screening of putative anti-fibrotic drugs. Moreover, we have demonstrated the pivotal role of longitudinal micro-CT imaging in reducing the number of animals required per experiment in which each animal can be its own control. This approach permits a valuable decrease in costs and time to develop disease animal models.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Bleomicina/farmacologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tecnologia , Microtomografia por Raio-X
11.
Porcine Health Manag ; 8(1): 21, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590351

RESUMO

BACKGROUND: Gut microbial anaerobic fermentation produces short-chain fatty acids (SCFA), which are important substrates for energy metabolism and anabolic processes in mammals. SCFA can regulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction protein (TJp) functions, which prevent the passage of antigens through the paracellular space. The aim of this study was to evaluate the effect of in vitro supplementation with SCFA (acetate, propionate, butyrate, and lactate) at different concentrations on viability, nitric oxide (NO) release (oxidative stress parameter) in cell culture supernatants, and gene expression of TJp (occludin, zonula occludens-1, and claudin-4) and pro-inflammatory pathway-related mediators (ß-defensin 1, TNF-α, and NF-κB) in intestinal porcine epithelial cell line J2 (IPEC-J2). RESULTS: The SCFA tested showed significant effects on IPEC-J2, which proved to be dependent on the type and specific concentration of the fatty acid. Acetate stimulated cell viability and NO production in a dose-dependent manner (P < 0.05), and specifically, 5 mM acetate activated the barrier response through claudin-4, and immunity through ß-defensin 1 (P < 0.05). The same effect on these parameters was shown by propionate supplementation, especially at 1 mM (P < 0.05). Contrarily, lactate and butyrate showed different effects compared to acetate and propionate, as they did not stimulate an increase of cell viability and regulated barrier integrity through zonula occludens-1 and occludin, especially at 30 mM and 0.5 mM, respectively (P < 0.05). Upon supplementation with SCFA, the increase of NO release at low levels proved not to have detrimental effects on IPEC-J2 proliferation/survival, and in the case of acetate and propionate, such levels were associated with beneficial effects. Furthermore, the results showed that SCFA supplementation induced ß-defensin 1 (P < 0.05) that, in turn, may have been involved in the inhibition of TNF-α and NF-κB gene expression (P < 0.05). CONCLUSIONS: The present study demonstrates that the supplementation with specific SCFA in IPEC-J2 can significantly modulate the process of barrier protection, and that particularly acetate and propionate sustain cell viability, low oxidative stress activity and intestinal barrier function.

12.
Sci Rep ; 12(1): 8742, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610327

RESUMO

Single cell classification is elucidating homeostasis and pathology in tissues and whole organs. We applied in situ spatial proteomics by multiplex antibody staining to routinely processed mouse lung, healthy and during a fibrosis model. With a limited validated antibody panel (24) we classify the normal constituents (alveolar type I and II, bronchial epithelia, endothelial, muscular, stromal and hematopoietic cells) and by quantitative measurements, we show the progress of lung fibrosis over a 4 weeks course, the changing landscape and the cell-specific quantitative variation of a multidrug transporter. An early decline in AT2 alveolar cells and a progressive increase in stromal cells seems at the core of the fibrotic process.


Assuntos
Proteômica , Fibrose Pulmonar , Células Epiteliais Alveolares/metabolismo , Animais , Homeostase , Pulmão/patologia , Camundongos , Fibrose Pulmonar/patologia
13.
Animals (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34573721

RESUMO

Arginine is a semi-essential amino acid, supplementation with which induces a reduction of intestinal damage and an improvement of intestinal immunity in weaned piglets, but the mechanism is not yet entirely clear. The aim of this study was to characterise a co-culture model by measuring changes in gene expression over time (24 and 48 h) in intestinal IPEC-J2 cells in the presence of immune cells activated with phytohemagglutinin and, consequently, to assess the effectiveness of arginine deprivation or supplementation in modulating the expression of certain cytokines related to the regulation of intestinal cells' function. The main results show the crucial role of arginine in the viability/proliferation of intestinal cells evaluated by an MTT assay, and in the positive regulation of the expression of pro-inflammatory (TNF-α, IL-1α, IL-6, IL-8) and anti-inflammatory (TGF-ß) cytokines. This experimental model could be important for analysing and clarifying the role of nutritional conditions in intestinal immune cells' functionality and reactivity in pigs as well as the mechanisms of the intestinal defence system. Among the potential applications of our in vitro model of interaction between IEC and the immune system there is the possibility of studying the effect of feed additives to improve animal health and production.

14.
Sci Rep ; 11(1): 18513, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531421

RESUMO

Systemic sclerosis (SSc) is an autoimmune disease characterized by an excessive production and accumulation of collagen in the skin and internal organs often associated with interstitial lung disease (ILD). Its pathogenetic mechanisms are unknown and the lack of animal models mimicking the features of the human disease is creating a gap between the selection of anti-fibrotic drug candidates and effective therapies. In this work, we intended to pharmacologically validate a SSc-ILD model based on 1 week infusion of bleomycin (BLM) by osmotic minipumps in C57/BL6 mice, since it will serve as a tool for secondary drug screening. Nintedanib (NINT) has been used as a reference compound to investigate antifibrotic activity either for lung or skin fibrosis. Longitudinal Micro-CT analysis highlighted a significant slowdown in lung fibrosis progression after NINT treatment, which was confirmed by histology. However, no significant effect was observed on lung hydroxyproline content, inflammatory infiltrate and skin lipoatrophy. The modest pharmacological effect reported here could reflect the clinical outcome, highlighting the reliability of this model to better profile potential clinical drug candidates. The integrative approach presented herein, which combines longitudinal assessments with endpoint analyses, could be harnessed in drug discovery to generate more reliable, reproducible and robust readouts.


Assuntos
Indóis/uso terapêutico , Doenças Pulmonares Intersticiais/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Escleroderma Sistêmico/tratamento farmacológico , Animais , Bleomicina , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Indóis/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/patologia , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/patologia
15.
Biomed Mater ; 16(5)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34271554

RESUMO

Biofunctionalization was investigated for polymers and metals considering their scarce integration ability. On the contrary few studies dealt with ceramic biofunctionalization because the bioactive and bioresorbable surfaces of ceramics are able to positively interact with biological environment. In this study the cell-response improvement on biofunctionalized wollastonite and diopside-based scaffolds was demonstrated. The ceramics were first obtained by heat treatment of a silicone embedding reactive oxide fillers and then biofunctionalized with adhesive peptides mapped on vitronectin. The most promisingin vitroresults, in terms of h-osteoblast proliferation and bone-related gene expression, were reached anchoring selectively a peptide stable toward proteolytic degradation induced by serum-enriched medium. Inin vivoassays the anchoring of this protease-stable adhesive peptide was combined with self-assembling peptides, for increasing cell viability and angiogenesis. The results demonstrated external and internal cell colonization of biofunctionalized scaffolds with formation of new blood vessels (neoangiogenesis) and stimulation of ectopic mineralization.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos , Cerâmica , Peptídeos , Tecidos Suporte/química , Adulto , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerâmica/química , Cerâmica/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Engenharia Tecidual/métodos
16.
J Histochem Cytochem ; 69(8): 535-541, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34282664

RESUMO

Immunodetection on mouse routinely processed tissue via antibodies raised in mice faces cross-reactivity of the secondary anti-mouse reagents with endogenous immunoglobulins, which permeate the tissue. Various solutions to this problem have been devised and include endogenous Ig block with anti-mouse Fab fragments or directly conjugated primary antibodies. Mouse isotype-specific antibodies, differently from reagents directed against both heavy and light chains, fail to detect endogenous Ig after fixation and embedding, while providing a clean and specific detection system for mouse antibodies on mouse routinely processed tissue.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/química , Fragmentos Fab das Imunoglobulinas/química , Isotipos de Imunoglobulinas/química , Imuno-Histoquímica/métodos , Indicadores e Reagentes/química , Animais , Reações Cruzadas/imunologia , Imuno-Histoquímica/normas , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Baço/citologia , Baço/metabolismo
17.
Front Vet Sci ; 8: 671776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322533

RESUMO

Three-dimensional (3D) printing has gained popularity in tissue engineering and in the field of cartilage regeneration. This is due to its potential to generate scaffolds with spatial variation of cell distribution or mechanical properties, built with a variety of materials that can mimic complex tissue architecture. In the present study, horse articular chondrocytes were cultured for 2 and 4 weeks in 3D-printed chitosan (CH)-based scaffolds prepared with or without hyaluronic acid and in the presence of fetal bovine serum (FBS) or platelet lysate (PL). These 3D culture systems were analyzed in terms of their capability to maintain chondrocyte differentiation in vitro. This was achieved by evaluating cell morphology, immunohistochemistry (IHC), gene expression of relevant cartilage markers (collagen type II, aggrecan, and Sox9), and specific markers of dedifferentiated phenotype (collagen type I, Runx2). The morphological, histochemical, immunohistochemical, and molecular results demonstrated that the 3D CH scaffold is sufficiently porous to be colonized by primary chondrocytes. Thereby, it provides an optimal environment for the colonization and synthetic activity of chondrocytes during a long culture period where a higher rate of dedifferentiation can be generally observed. Enrichment with hyaluronic acid provides an optimal microenvironment for a more stable maintenance of the chondrocyte phenotype. The use of 3D CH scaffolds causes a further increase in the gene expression of most relevant ECM components when PL is added as a substitute for FBS in the medium. This indicates that the latter system enables a better maintenance of the chondrocyte phenotype, thereby highlighting a fair balance between proliferation and differentiation.

18.
Sci Rep ; 10(1): 18735, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127949

RESUMO

Although increasing used in the preclinical testing of new anti-fibrotic drugs, a thorough validation of micro-computed tomography (CT) in pulmonary fibrosis models has not been performed. Moreover, no attempts have been made so far to define density thresholds to discriminate between aeration levels in lung parenchyma. In the present study, a histogram-based analysis was performed in a mouse model of bleomycin (BLM)-induced pulmonary fibrosis by micro-CT, evaluating longitudinal density changes from 7 to 21 days after BLM challenge, a period representing the progression of fibrosis. Two discriminative densitometric indices (i.e. 40th and 70th percentiles) were extracted from Hounsfield Unit density distributions and selected for lung fibrosis staging. The strong correlation with histological findings (rSpearman = 0.76, p < 0.01) confirmed that variations in 70th percentile could reflect a pathological lung condition and estimate the effect of antifibrotic treatments. This index was therefore used to define lung aeration levels in mice distinguishing in hyper-inflated, normo-, hypo- and non-aerated pulmonary compartments. A retrospective analysis performed on a large cohort of mice confirmed the correlation between the proposed preclinical density thresholds and the histological outcomes (rSpearman = 0.6, p < 0.01), strengthening their suitability for tracking disease progression and evaluating antifibrotic drug candidates.


Assuntos
Bleomicina/toxicidade , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Animais , Densitometria , Modelos Animais de Doenças , Progressão da Doença , Feminino , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Estudos Retrospectivos , Microtomografia por Raio-X
19.
Res Vet Sci ; 133: 98-105, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32961475

RESUMO

In vitro studies have demonstrated that platelet lysate (PL) can serve as an alternative to platelet-rich plasma (PRP) to sustain chondrocyte proliferation and production of extracellular matrix components in chondrocytes. The present study aimed to evaluate the direct effects of PL on equine articular chondrocytes in vitro in order to provide a rationale for in vivo use of PL. An in vitro cell proliferation and de-differentiation model was used: primary articular chondrocytes isolated from horse articular cartilage were cultured at low density under adherent conditions to promote cell proliferation. Chondrocytes were cultured in serum-free medium, 10% foetal bovine serum (FBS) supplemented medium, or in the presence of alginate beads containing 5%, 10% and 20% PL. Cell proliferation and gene expression of relevant chondrocyte differentiation markers were investigated. The proliferative capacity of cultured chondrocytes, was sustained more effectively at certain concentrations of PL as compared to that with FBS. In addition, as opposed to FBS, PL, particularly at percentages of 5% and 10%, could maintain the gene expression pattern of relevant chondrocyte differentiation markers. In particular, 5% PL supplementation showed the best compromise between chondrocyte proliferation capacity and maintenance of differentiation. The results of the present study provide a rationale for using PL as an alternative to FBS for in vitro expansion of chondrocytes for matrix-assisted chondrocyte implantation, construction of 3D scaffolds for tissue engineering, and treatment of damaged articular cartilage.


Assuntos
Plaquetas/fisiologia , Cartilagem Articular/citologia , Diferenciação Celular , Condrócitos/fisiologia , Engenharia Tecidual , Alginatos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Meios de Cultura Livres de Soro , Matriz Extracelular/metabolismo , Cavalos , Engenharia Tecidual/métodos , Engenharia Tecidual/veterinária
20.
Front Pharmacol ; 11: 1117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792953

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive degenerative lung disease leading to respiratory failure and death. Although anti-fibrotic drugs are now available for treating IPF, their clinical efficacy is limited and lung transplantation remains the only modality to prolong survival of IPF patients. Despite its limitations, the bleomycin (BLM) animal model remains the best characterized experimental tool for studying disease pathogenesis and assessing efficacy of novel potential drugs. In the present study, the effects of oropharyngeal (OA) and intratracheal (IT) administration of BLM were compared in C57BL/6 mice. The development of lung fibrosis was followed in vivo for 28 days after BLM administration by micro-computed tomography and ex vivo by histological analyses (bronchoalveolar lavage, histology in the left lung to stage fibrosis severity and hydroxyproline determination in the right lung). In a separate study, the antifibrotic effect of Nintedanib was investigated after oral administration (60 mg/kg for two weeks) in the OA BLM model. Lung fibrosis severity and duration after BLM OA and IT administration was comparable. However, a more homogeneous distribution of fibrotic lesions among lung lobes was apparent after OA administration. Quantification of fibrosis by micro-CT based on % of poorly aerated tissue revealed that this readout correlated significantly with the standard histological methods in the OA model. These findings were further confirmed in a second study in the OA model, evaluating Nintedanib anti-fibrotic effects. Indeed, compared to the BLM group, Nintedanib inhibited significantly the increase in % of poorly aerated areas (26%) and reduced ex vivo histological lesions and hydroxyproline levels by 49 and 41%, respectively. This study indicated that micro-computed tomography is a valuable in vivo technology for lung fibrosis quantification, which will be very helpful in the future to better evaluate new anti-fibrotic drug candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...